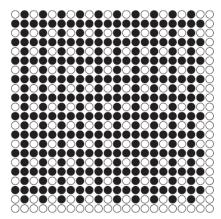

Recent Progress in Determination of Critical Experiment Correlations

B.J. Marshall marshallwj@ornl.gov

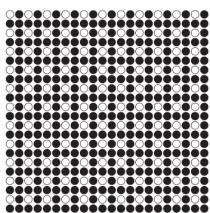
NCSP Technical Program Review Sandia National Laboratories March 15, 2016

Outline

- 1. Recap of last year's presentation
- 2. Results from FY15
- 3. Current status
- 4. Brief look ahead


Recap of FY14 work

- Criticality safety validations typically use many cases from a single series of critical experiments
- Correlation among these cases may be important for validation
 - Impacts trending analysis
 - Necessary input to constrain data adjustment
 - Uncertainty in bias increased do to reduced data independence
- Impact can be 3% Δk or more in USL for highly correlated experiments
- Indications that fuel pin pitch is the most important parameter in LEU pin arrays



Results from FY15

- Calculations in FY15 focused on WPNCS UACSA benchmark for critical experiment correlations
 - Included some LCT-007 cases and all of LCT-039
- Fuel rods drawn from same population for all cases
- Many cases use same fuel rod pitch but different rod patterns

Case 5: 1 rod in 2 removed - array 21 x 21

Case 6: 1 rod in 2 removed

Range of scenarios

- Early drafts of benchmark included fully correlated fuel rod parameters and pitch
 - Initial results indicated high correlation coefficients for virtually all cases
 - This approach has been retained as Scenario A
- Later drafts examined impact of individual rod parameters and placement
 - Fully randomized individual rod parameters and placement in Scenario E
- These end points bracket the range of possible modeling choices

Results from the different scenarios

Partial correlation matrix – Case A

Correlation coefficients for cases with the same pitch vary between 0.92 and 0.99

	7-1	7-2	7-3	39-1	39-2	39-3	39-4
7-1	1	0.93	0.39	0.98	0.98	0.97	0.97
7-2		1	0.56	0.92	0.92	0.93	0.93
7-3			1	0.41	0.39	0.41	0.42
39-1				1	0.98	0.97	0.97
39-2					1	0.97	0.97
39-3						1	0.97
39-4							1

Partial correlation matrix – Case E

All correlations between 0.18 and 0.71, most between 0.2 and 0.4

	7-1	7-2	7-3	39-1	39-2	39-3	39-4
7-1	1	0.36	0.46	0.45	0.20	0.20	0.32
7-2		1	0.64	0.29	0.30	0.32	0.33
7-3			1	0.42	0.45	0.45	0.44
39-1				1	0.23	0.24	0.23
39-2					1	0.24	0.24
39-3						1	0.24
39-4							1

Uncertainty in correlation coefficient

- Convergence of and uncertainty in correlation coefficients largely unknown
- Plots of k_{eff} and standard deviation for each case as a function of realization checked for convergence
 - Similar plots of correlation coefficient itself
 - Convergence achieved between 150 and 300 realizations
- Uncertainty estimated from repeated calculations
 - One pair of cases, same realizations, different random number seeds in KENO
 - Correlation coefficients from 0.250 0.336
 - Average 0.296, standard deviation 0.023

Current status: what we know

- 1. Very high correlation coefficients are possible
- 2. In-depth knowledge of experiment needed for correct, defensible modeling assumptions
- 3. For LCT systems, very sensitive to assumptions on fuel rod pitch
- 4. Shared materials not necessarily problematic
- 5. Current approaches are computation intensive
- 6. Reducing individual case uncertainties increases the correlation coefficient

Current status: International collaboration

- Attended workshop on critical experiment correlations at GRS in Munich, March 9-11
- Attendees included:
 - IRSN: Evgeny Ivanov and Nicolas Leclaire
 - OECD/NEA: Tatiana Ivanova and Ian Hill
 - GRS: Maik Stuke, Fabian Sommer, Elisabeth Peters
 - BfS: Ingo Reiche and Benjamin Ruprecht
 - AREVA: Axel Hoefer and Oliver Buss
 - Amec Foster Wheeler: Christopher Baker
 - PSI: Alexander Vasiliev
 - Dennis Mennerdahl and Maksim Chernykh (WTI)

Brief look ahead

- Interest in community to work with Gary Harms on one of his experiment series
 - Same rod in same spot every time
 - More information for each rod
 - Recently performed and well documented
- ORNL interest in moving forward with solutions and then metal systems
- Need to develop methods and guidance for practitioners and regulators

Are there any questions?

